Structural Basis for Allosteric Activation of Ubiquitylation Mediated by Ube2g2 and gp78 RING Finger

Yuhe Liang¹, Ranabir Das², Jess Li², Jennifer Mariano³, Allan Weissman³, Andrew Byrd², Xinhua Ji¹

¹Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, United States, ²Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD 21702, United States, ³Laboratory of Protein Dynamics and Signaling, National Cancer Institute, Frederick, MD 21702, United States

Ube2g2 is an E2 ubiquitin-conjugating enzyme and gp78 is an endoplasmic reticulum-associated E3 ubiquitin ligase with the RING finger. Distinct from the RING finger, gp78 recruits Ube2g2 with its G2BR domain. The Ube2g2-G2BR interaction is specific with high affinity, induces significant conformational changes near the active site of Ube2g2, causes a 50-fold increase in the affinity between Ube2g2 and the RING finger, and results in markedly increased ubiquitylation by Ube2g2 and the gp78 RING finger (Molecular Cell 34, 674-685, 2009). Here, we report the crystal structure of the ternary Ube2g2-G2BR-RING complex at 2.3 Å resolution. The crystal belongs to space group \(P4_2_2_2 \), with unit cell parameters \(a = b = 58.25 \) and \(c = 158.43 \) Å. The structure shows that the G2BR and RING finger of gp78 bind to the opposite sides of the Ube2g2 molecule. Comparative analysis of the ligand-free Ube2g2 (PDB entry 2CYX), Ube2g2-G2BR (3H8K), and Ube2g2-G2BR-RING (this work) structures reveals structural basis for the allosteric activation of ubiquitylation mediated by Ube2g2 and the gp78 RING finger. The Ube2g2-G2BR-RING structure presented here is the first of its kind, shedding lights on the mechanism of other E3 ubiquitin ligases with the RING finger.

This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. X-ray diffraction data were collected at beamline 22-ID of SER-CAT, Advanced Photon Source, Argonne National Laboratory.