Experimental Electron Density Distribution of Dimethoxygossypol, a Derivative of the Disesquiterpene Gossypol Isolated from Cotton Plants

Carlos Zelaya1, Michael K. Dowd2, Edwin D. Stevens1

1Department of Chemistry, University of New Orleans, New Orleans, LA 70148, United States, 2Southern Regional Research Center, USDA, New Orleans, LA 70124, United States

Gossypol is a natural product isolated from the cotton plant that is of interest because of its wide sphere of bioactivity. We have isolated and synthesized a number of derivatives of gossypol to explore their anticancer and antifungal activity. Crystals of the 6,6'-dimethoxy derivative were found to be suitable for a high-resolution study of the electron density distribution. A highly redundant set of x-ray diffraction intensity measurements was collected to $(\sin \theta / \lambda)_{\text{max}}$ of 1.19 Å\(^{-1}\) at 120 K. The experimental electron density distribution was obtained by least-squares refinement of the x-ray data using the Hansen-Coppens aspherical atom multipole model.

In addition to maps of the molecular deformation density, the topology of the electron distribution of dimethoxygossypol has been analyzed using the \textit{Atoms in Molecules} approach. The locations of the critical points of the electron distribution, and the values of the density, $\rho(r_b)$, Laplacian $\nabla^2 \rho(r_b)$, and bond ellipticity, ϵ, at the bond critical points have been determined for the wide variety of different covalent bonds and hydrogen bonds present in the structure.